Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(5): e0264121, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36000897

RESUMO

The SARS-CoV-2 variant of concern (VOC) Delta was first detected in India in October 2020. The first imported cases of the Delta variant in Brazil were identified in April 2021 in the southern region, followed by more cases in different regions during the following months. By early September 2021, Delta was already the dominant variant in the southeastern (87%), southern (73%), and northeastern (52%) Brazilian regions. This study aimed to understand the spatiotemporal dissemination dynamics of Delta in Brazil. To this end, we employed a combination of maximum likelihood (ML) and Bayesian methods to reconstruct the evolutionary relationship of 2,264 VOC Delta complete genomes (482 from this study) recovered across 21 of the 27 Brazilian federal units. Our phylogeographic analyses identified three major transmission clusters of Delta in Brazil. The clade BR-I (n = 1,560) arose in Rio de Janeiro in late April 2021 and was the major cluster behind the dissemination of the VOC Delta in the southeastern, northeastern, northern, and central-western regions. The AY.101 lineage (n = 207) that arose in the Paraná state in late April 2021 and aggregated the largest fraction of sampled genomes from the southern region. Lastly, the AY.46.3 lineage emerged in Brazil in the São Paulo state in early June 2021 and remained mostly restricted to this state. In the rapid turnover of viral variants characteristic of the SARS-CoV-2 pandemic, Brazilian regions seem to occupy different stages of an increasing prevalence of the VOC Delta in their epidemic profiles. This process demands continuous genomic and epidemiological surveillance toward identifying and mitigating new introductions, limiting their dissemination, and preventing the establishment of more significant outbreaks in a population already heavily affected by the COVID-19 pandemic. IMPORTANCE Amid the SARS-CoV-2 continuously changing epidemic profile, this study details the space-time dynamics of the emergence of the Delta lineage across Brazilian territories, pointing out its multiple introductions in the country and its most prevalent sublineages. Some of these sublineages have their emergence, alongside their genomic composition and geographic distribution, detailed here for the first time. A special focus is given to the emergence process of Delta outside the country's south and southeast regions, the most populated and subjects of most published SARS-CoV-2 studies in Brazil. In summary, the study allows a better comprehension of the evolution process of a SARS-CoV-2 lineage that would be associated with a significant recrudescence of the pandemic in Brazil.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Brasil/epidemiologia , Pandemias , COVID-19/epidemiologia , Teorema de Bayes
2.
Microb Genom ; 8(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35297757

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has infected almost 200 million people worldwide by July 2021 and the pandemic has been characterized by infection waves of viral lineages showing distinct fitness profiles. The simultaneous infection of a single individual by two distinct SARS-CoV-2 lineages may impact COVID-19 disease progression and provides a window of opportunity for viral recombination and the emergence of new lineages with differential phenotype. Several hundred SARS-CoV-2 lineages are currently well phylogenetically defined, but two main factors have precluded major coinfection/codetection and recombination analysis thus far: (i) the low diversity of SARS-CoV-2 lineages during the first year of the pandemic, which limited the identification of lineage defining mutations necessary to distinguish coinfecting/recombining viral lineages; and the (ii) limited availability of raw sequencing data where abundance and distribution of intrasample/intrahost variability can be accessed. Here, we assembled a large sequencing dataset from Brazilian samples covering a period of 18 May 2020 to 30 April 2021 and probed it for unexpected patterns of high intrasample/intrahost variability. This approach enabled us to detect nine cases of SARS-CoV-2 coinfection with well characterized lineage-defining mutations, representing 0.61 % of all samples investigated. In addition, we matched these SARS-CoV-2 coinfections with spatio-temporal epidemiological data confirming its plausibility with the cocirculating lineages at the timeframe investigated. Our data suggests that coinfection with distinct SARS-CoV-2 lineages is a rare phenomenon, although it is certainly a lower bound estimate considering the difficulty to detect coinfections with very similar SARS-CoV-2 lineages and the low number of samples sequenced from the total number of infections.


Assuntos
COVID-19/virologia , Coinfecção/virologia , SARS-CoV-2/genética , Superinfecção/virologia , Brasil , Genoma Viral , Humanos , Mutação , Filogenia , Polimorfismo de Nucleotídeo Único
3.
Sci Total Environ ; 813: 151889, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-34826491

RESUMO

Mangroves under macro-tidal regimes are global carbon sequestration hotspots but the microbial drivers of biogeochemical cycles remain poorly understood. Here, we investigate the drivers of mangrove microbial community composition across a porewater-creek-estuary-ocean continuum. Observations were performed on the Amazon region in one of the largest mangrove systems worldwide with effective sequestration of organic carbon buried in soils and dissolved carbon via outwelling to the ocean. The potential export to the adjacent oceanic region ranged from 57 to 380 kg of dissolved and particulate organic carbon per second (up to 33 thousand tons C per day). Macro tides modulated microbial communities and their metabolic processes, e.g., anoxygenic phototrophy, sulfur, and nitrogen cycling. Respiration, sulfur metabolism and dissolved organic carbon (DOC) levels were linked to functional groups and microbial cell counts. Total microbial counts decreased and cyanobacteria counts peaked in the spring tide. The microbial groups driving carbon, nitrogen, sulfur and methane cycles were consistent across all spatial scales. Taxonomic groups engaged in sulfur cycling (Allochromatium, Desulfovibrio, and Thibacillus) within mangroves were abundant at all scales. Tidally-driven porewater exchange within mangroves drove a progressive increase of sulfur cycle taxonomic groups and their functional genes both temporally (tidal cycles) and spatially (from mangrove porewater to continental shelf). Overall, we revealed a unified and consistent response of microbiomes at different spatial and temporal scales to tidally-driven mangrove porewater exchange.


Assuntos
Microbiota , Carbono , Estuários , Nitrogênio , Enxofre , Áreas Alagadas
5.
Arch Microbiol ; 203(6): 3683-3686, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33829291

RESUMO

Vibrio fluvialis is a halophilic bacterium frequently found in estuarine and coastal waters environments. The strain 362.3 was isolated from Mussismilia braziliensis coral of Abrolhos Bank. In this study, to gain insights into the marine adaptation in V. fluvialis, we sequenced the genome of 362.3 strain, which comprised 4,607,294 bp with a G + C content of 50.2%. In silico analysis showed that V. fluvialis 362.2 encodes genes related to chitin catabolic pathway, iron metabolism, osmotic stress and membrane transport.


Assuntos
Antozoários/microbiologia , Vibrio/genética , Adaptação Fisiológica , Animais , Sequência de Bases , Genoma Bacteriano , Filogenia , Vibrio/classificação , Microbiologia da Água
6.
Virus Evol ; 7(2): veab091, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35039782

RESUMO

One of the most remarkable severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC) features is the significant number of mutations they acquired. However, the specific factors that drove the emergence of such variants since the second half of 2020 are not fully resolved. In this study, we describe a new SARS-CoV-2 P.1 sub-lineage circulating in Brazil, denoted here as Gamma-like-II, that as well as the previously described lineage Gamma-like-I shares several lineage-defining mutations with the VOC Gamma. Reconstructions of ancestor sequences support that most lineage-defining mutations of the Spike (S) protein, including those at the receptor-binding domain (RBD), accumulated at the first P.1 ancestor. In contrast, mutations outside the S protein were mostly fixed at subsequent steps. Our evolutionary analyses estimate that P.1-ancestral strains carrying RBD mutations of concern probably circulated cryptically in the Amazonas for several months before the emergence of the VOC Gamma. Unlike the VOC Gamma, the other P.1 sub-lineages displayed a much more restricted dissemination and accounted for a low fraction (<2 per cent) of SARS-CoV-2 infections in Brazil in 2021. The stepwise diversification of lineage P.1 through multiple inter-host transmissions is consistent with the hypothesis that partial immunity acquired from natural SARS-CoV-2 infections in heavily affected regions might have been a major driving force behind the natural selection of some VOCs. The lag time between the emergence of the P.1 ancestor and the expansion of the VOC Gamma and the divergent epidemic trajectories of P.1 sub-lineages support a complex interplay between the emergence of mutations of concern and viral spread in Brazil.

7.
Sci Total Environ ; 760: 143411, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33243513

RESUMO

The Great Amazon Reef System (GARS) covers an estimated area of 56,000 km2 off the mouth of the Amazon River. Living rhodolith holobionts are major benthic components of the GARS. However, it is unclear whether environmental conditions modulate the rhodolith microbiomes. Previous studies suggest that environmental parameters such as light, temperature, depth, and nutrients are drivers of rhodolith health. However, it is unclear whether rhodoliths from different sectors (northern, central, and southern) from the GARS have different microbiomes. We analysed metagenomes of rhodoliths (n = 10) and seawater (n = 6), obtained from the three sectors, by illumina shotgun sequencing (total read counts: 25.73 million). Suspended particulate material and isotopic composition of dissolved organic carbon (δ13C) indicated a strong influence of the Amazon river plume over the entire study area. However, photosynthetically active radiation at the bottom (PARb) was higher in the southern sector reefs, ranging from 10.1 to 14.3 E.m-2 day-1. The coralline calcareous red algae (CCA) Corallina caespitosa, Corallina officinalis, Lithophyllum cabiochiae, and Hapalidiales were present in the three sectors and in most rhodolith samples. Rhodolith microbiomes were very homogeneous across the studied area and differed significantly from seawater microbiomes. However, some subtle differences were found when comparing the rhodolith microbiomes from the northern and central sectors to the ones from the southern. Consistent with the higher light availability, two phyla were more abundant in rhodolith microbiomes from southern sites (Bacteroidetes, and Cyanobacteria). In addition, two functional categories were enhanced in southern rhodolith microbiomes (iron acquisition and metabolism, and photosynthesis). Phycobiliprotein-coding genes were also more abundant in southern locations, while the functional categories of respiration and sulfur metabolism were enhanced in northern and central rhodolith microbiomes, consistent with higher nutrient loads. The results confirm the conserved nature of rhodolith microbiomes even under pronounced environmental gradients. Subtle taxonomic and functional differences observed in rhodolith microbiomes may enable rhodoliths to thrive in changing environmental conditions.


Assuntos
Microbiota , Rodófitas , Recifes de Corais , Metagenoma , Fotossíntese , Água do Mar
8.
Preprint em Inglês | Fiocruz Preprints | ID: ppf-52431

RESUMO

Em períodos como o da presente pandemia de SARS-CoV-2, em que diversas linhagens e variantes de um mesmo vírus circulam simultaneamente em uma população, a ocorrência de coinfecções é sempre uma preocupação. Definidas como eventos nos quais uma mesma pessoa ou célula encontra-se infectada por duas ou mais amostras virais de perfil genético distinto, as coinfecções podem representar um risco à saúde coletiva caso tornem possíveis eventos de recombinação, ou seja, novos perfis genéticos virais derivados de uma "mescla" entre as linhagens genéticas que infectam o mesmo paciente. O presente trabalho, desenvolvido por pesquisadores de diversas unidades da Fiocruz vinculados à Rede Genômica e publicado sob a forma de preprint (sem revisão independente por outros pesquisadores), investiga o fenômeno das reinfecções com base em 2.263 amostras de SARS-CoV-2, utilizando métodos de análise com uso de computadores desenvolvidos pela própria Fiocruz. Estes métodos permitiram identificar sinais de alta variabilidade nos dados de sequenciamento do genoma, variabilidade esta associada ao sequenciamento simultâneo de mais de um perfil genético viral.

10.
Arch Microbiol ; 202(8): 2329-2336, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32529508

RESUMO

Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) is a rapid, cost-effective and high-throughput method for bacteria characterization. However, most previous studies focused on clinical isolates. In this study, we evaluated the use of MALDI-TOF MS as a rapid screening tool for marine bacterial symbionts. A set of 255 isolates from different marine sources (corals, sponge, fish and seawater) was analyzed using cell lysates to obtain a rapid grouping. Cluster analysis of mass spectra and 16S rRNA showed 18 groups, including Vibrio, Bacillus, Pseudovibrio, Alteromonas and Ruegeria. MALDI-TOF distance similarity scores ≥ 60% and ≥ 70% correspond to ≥ 98.7% 16S rRNA gene sequence similarity and ≥ 95% pyrH gene sequence similarity, respectively. MALDI-TOF MS is a useful tool for Vibrio species groups' identification.


Assuntos
Microbiologia Ambiental , Biologia Marinha/métodos , Água do Mar/microbiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Vibrio/classificação , RNA Ribossômico 16S/genética , Simbiose , Vibrio/química , Vibrio/genética
12.
Environ Pollut ; 249: 295-304, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30901643

RESUMO

Unplanned oil spills during offshore oil production are a serious problem for the industry and the marine environment. Here we assess the biodegradation potential of marine microorganisms from three water depths in the Campos Basin (South Atlantic Ocean): (i) 5 m (surface), (ii) ∼80 m (chlorophyll maximum layer), and (iii) ∼1200 m (near the bottom). After incubating seawater samples with or without crude oil for 52 days, we used metagenomics and classic microbiology techniques to analyze microbial abundance and diversity, and measured physical-chemical parameters to better understand biodegradation processes. We observed increased microbial abundance and concomitant decreases in dissolved oxygen and hydrocarbon concentrations, indicating oil biodegradation in the three water depths treatments within approximately 27 days. An increase in metagenomic sequences of oil-degrading archaea, fungi, and bacteria (Alcanivorax, Alteromonas, Colwellia, Marinobacter, and Pseudomonas) accompanied by a significant increase in metagenomic sequences involved in the degradation of aromatic compounds indicate that crude oil promotes the growth of microorganisms with oil degradation potential. The abundance of genes involved in biodegrading benzene, toluene, ethylbenzene, xylene, alkanes, and poly-aromatic hydrocarbons peaked approximately 3 days after oil addition. All 12 novel metagenome-assembled genomes contained genes involved in hydrocarbon degradation, indicating the oil-degrading potential of planktonic microbes in the Campos Basin.


Assuntos
Biodegradação Ambiental , Monitoramento Ambiental , Metagenômica , Poluição por Petróleo/análise , Petróleo/metabolismo , Microbiologia da Água , Alcanos/metabolismo , Oceano Atlântico , Bactérias/metabolismo , Hidrocarbonetos/análise , Hidrocarbonetos/metabolismo , Metagenoma , Água do Mar/química
14.
Antonie Van Leeuwenhoek ; 109(3): 431-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26786501

RESUMO

The taxonomic position of strains Ab112(T) (CBAS 572(T)) and Ab227_MC (CBAS 573) was evaluated by means of genomic taxonomy. These isolates represent the dominant flora cultured from the healthy marine sponge Arenosclera brasiliensis, endemic to Rio de Janeiro. Strains CBAS 572(T) and CBAS 573 shared >98 % 16S rRNA sequence identity with Endozoicomonas numazuensis and Endozoicomonas montiporae. In silico DNA-DNA Hybridization, i.e. genome-to-genome distance (GGD), amino acid identity (AAI) and average nucleotide identity (ANI) further showed that these strains had <70 %, at maximum 71.1 and 78 % of identity, respectively, to their closest neighbours E. numazuensis and E. montiporae. The DNA G+C content of CBAS 572(T) and CBAS 573 were 47.6 and 47.7 mol%, respectively. Phenotypic and chemotaxonomic features also allowed a separation from the type strains of their phylogenetic neighbours. Useful phenotypic features for discriminating CBAS 572(T) and CBAS 573 from E. numazuensis and E. montiporae species include C8 esterase, N-acetyl-ß-glucosaminidase, citric acid, uridine and siderophore. The species Endozoicomonas arenosclerae sp. nov. is proposed to harbour the new isolates. The type strain is CBAS 572(T) (=Ab112(T)).


Assuntos
Código de Barras de DNA Taxonômico , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Genoma Bacteriano , Técnicas de Tipagem Bacteriana , Composição de Bases , Gammaproteobacteria/química , Estudos de Associação Genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Filogenia , RNA Ribossômico 16S/genética
15.
Front Microbiol ; 6: 1232, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635734

RESUMO

Guanabara Bay is the second largest bay in the coast of Brazil, with an area of 384 km(2). In its surroundings live circa 16 million inhabitants, out of which 6 million live in Rio de Janeiro city, one of the largest cities of the country, and the host of the 2016 Olympic Games. Anthropogenic interference in Guanabara Bay area started early in the XVI century, but environmental impacts escalated from 1930, when this region underwent an industrialization process. Herein we present an overview of the current environmental and sanitary conditions of Guanabara Bay, a consequence of all these decades of impacts. We will focus on microbial communities, how they may affect higher trophic levels of the aquatic community and also human health. The anthropogenic impacts in the bay are flagged by heavy eutrophication and by the emergence of pathogenic microorganisms that are either carried by domestic and/or hospital waste (e.g., virus, KPC-producing bacteria, and fecal coliforms), or that proliferate in such conditions (e.g., vibrios). Antibiotic resistance genes are commonly found in metagenomes of Guanabara Bay planktonic microorganisms. Furthermore, eutrophication results in recurrent algal blooms, with signs of a shift toward flagellated, mixotrophic groups, including several potentially harmful species. A recent large-scale fish kill episode, and a long trend decrease in fish stocks also reflects the bay's degraded water quality. Although pollution of Guanabara Bay is not a recent problem, the hosting of the 2016 Olympic Games propelled the government to launch a series of plans to restore the bay's water quality. If all plans are fully implemented, the restoration of Guanabara Bay and its shores may be one of the best legacies of the Olympic Games in Rio de Janeiro.

16.
PeerJ ; 2: e419, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25024903

RESUMO

Marine sponges are the oldest Metazoa, very often presenting a complex microbial consortium. Such is the case of the marine sponge Arenosclera brasiliensis, endemic to Rio de Janeiro State, Brazil. In this investigation we characterized the diversity of some of the culturable heterotrophic bacteria living in association with A. brasiliensis and determined their antimicrobial activity. The genera Endozoicomonas (N = 32), Bacillus (N = 26), Shewanella (N = 17), Pseudovibrio (N = 12), and Ruegeria (N = 8) were dominant among the recovered isolates, corresponding to 97% of all isolates. Approximately one third of the isolates living in association with A. brasiliensis produced antibiotics that inhibited the growth of Bacillus subtilis, suggesting that bacteria associated with this sponge play a role in its health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...